Matching the Photocurrent of 2‐Terminal Mechanically‐Stacked Perovskite/Organic Tandem Solar Modules by Varying the Cell Width

Author:

García Cerrillo José1ORCID,Distler Andreas1ORCID,Matteocci Fabio2,Forberich Karen13,Wagner Michael3,Basu Robin1,Castriotta Luigi Angelo2,Jafarzadeh Farshad2,Brunetti Francesca2,Yang Fu4,Li Ning135,Corpus‐Mendoza Asiel Neftalí6,Di Carlo Aldo27,Brabec Christoph J.13ORCID,Egelhaaf Hans-Joachim13

Affiliation:

1. Institute of Materials for Electronics and Energy Technology (i-MEET) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Martensstraße 7 D-91058 Erlangen Germany

2. Center for Hybrid and Organic Solar Energy (CHOSE) University of Rome Tor Vergata via del Politecnico 1 00133 Rome Italy

3. Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN) Forschungszentrum Jülich GmbH Immerwahrstraße 2 D-91058 Erlangen Germany

4. Laboratory of Advanced Optoelectronic Materials College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China

5. State Key Laboratory of Luminescent Materials and Devices Institute of Polymer Optoelectronic Materials and Devices School of Materials Science and Engineering South China University of Technology Guangzhou 510640 China

6. Instituto de Energías Renovables Universidad Nacional Autónoma de México Priv. Xochicalco S/N Temixco Morelos 62580 México

7. Institute of Structure of Matter (ISM) National Research Council (CNR) via del Fosso de Cavaliere 100 00133 Rome Italy

Abstract

Photocurrent matching in conventional monolithic tandem solar cells is achieved by choosing semiconductors with complementary absorption spectra and by carefully adjusting the optical properties of the complete top and bottom stacks. However, for thin film photovoltaic technologies at the module level, another design variable significantly alleviates the task of photocurrent matching, namely the cell width, whose modification can be readily realized by the adjustment of the module layout. Herein, this concept is demonstrated at the experimental level for the first time for a 2T‐mechanically stacked perovskite (FAPbBr3)/organic (PM6:Y6:PCBM) tandem mini‐module, an unprecedented approach for these emergent photovoltaic technologies fabricated in an independent manner. An excellent I sc matching is achieved by tuning the cell widths of the perovskite and organic modules to 7.22 mm (PCE PVKT‐mod = 6.69%) and 3.19 mm (PCE OPV‐mod = 12.46%), respectively, leading to a champion efficiency of 14.94% for the tandem module interconnected in series with an aperture area of 20.25 cm2. Rather than demonstrating high efficiencies at the level of small lab cells, this successful experimental proof‐of‐concept at the module level proves to be particularly useful to couple devices with non‐complementary semiconductors, either in series or in parallel electrical connection, hence overcoming the limitations imposed by the monolithic structure.

Funder

Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst

Horizon 2020

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3