Affiliation:
1. Department of Mathematics, Physics and Electrical Engineering Northumbria University Newcastle upon Tyne NE1 8ST UK
2. School of Chemistry University of Bristol Bristol BS8 1TS UK
3. HORIBA UK Limited Northampton NN3 6FL UK
4. Department of Physics Stephenson Institute for Renewable Energy Liverpool L23 9SD UK
Abstract
Chalcogenide perovskites have been recently proposed as novel absorber materials for photovoltaic applications. BaZrS3, the most investigated compound of this family, shows a high absorption coefficient, a bandgap of around 1.8 eV, and excellent stability. In addition to the 3D perovskite BaZrS3, the Ba–Zr–S compositional space contains various 2D Ruddlesden–Popper phases Ban + 1ZrnS3n + 1 (with n = 1, 2, 3) which have recently been reported. Herein, it is shown that at high temperature the Gibbs free energies of 3D and 2D perovskites are very close, suggesting that 2D phases can be easily formed at high temperatures. The product of the BaS and ZrS2 solid‐state reaction, in different stoichiometric conditions, presents a mixture of BaZrS3 and Ba4Zr3S10. To carefully resolve the composition, X‐ray diffraction, scanning electron microscopy, and energy‐dispersive X‐ray spectroscopy analysis are complemented with Raman spectroscopy. For this purpose, the phonon dispersions, and the consequent Raman spectra, are calculated for the 3D and 2D chalcogenide perovskites, as well as for the binary precursors. This thorough characterization demonstrates the thermodynamic limitations and experimental difficulties in forming phase‐pure chalcogenide perovskites through solid‐state synthesis and the importance of using multiple techniques to soundly resolve the composition of these materials.
Funder
Engineering and Physical Sciences Research Council
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献