Affiliation:
1. Center for Advanced Analytical Science Guangzhou Key Laboratory of Sensing Materials and Devices Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices c/o School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 P. R. China
2. School of Chemical Engineering and Technology Sun Yat‐Sen University Zhuhai 519082 P. R. China
Abstract
Collaborative conversion of methane and carbon dioxide into sustainable chemicals is an appealing solution to simultaneously overcome both environmental problems and energy crisis. However, this reaction is limited to the preparation of syngas with the unfavorable feature for transportation and storage. Herein, liquid formaldehyde as product is fabricated by the collaborative conversion of methane and carbon dioxide using anatase phase titanium dioxide as photocatalyst. The productivity reaches 14.65 mmol g−1 with 88.32% selectivity. In situ diffuse reflectance Fourier transform infrared spectroscopy, isotope testes, and theoretical calculation clarify that the photoexcited holes and electrons engage into methane oxidation and carbon dioxide reduction over anatase using surface hydroxyl species and oxygen vacancy as active sites, respectively. The consumption of surface hydroxyl species on methane oxidation promotes the oxygen vacancy formation for carbon dioxide adsorption, mutually the carbon dioxide provides the oxygen atom for surface hydroxyl species facilitating methane oxidation. The consumption of photoelectrons and photoholes on carbon dioxide reduction and methane oxidation balances the number of photogenerated carriers and ensures the catalytic system stability. In this work, the avenue is broadened toward the co‐conversion of greenhouse gas into desirable chemical products in a sustainable way.
Funder
National Natural Science Foundation of China
Guangzhou Municipal Science and Technology Bureau