Correlation between Photoluminescence Features and Enhanced Performance in Formamidinium Lead Triiodide Quantum Dot Solar Cells by Replacement of Octadecene

Author:

Alessi Bruno1ORCID,Svrcek Vladimir1ORCID

Affiliation:

1. Renewable Energy Research Center National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Ibaraki 305‐8568 Japan

Abstract

In this study, an innovative approach is developed for fabricating formamidinium lead triiodide (FAPbI3) quantum dots (QDs) by substitution of octadecene (ODE). The results showcase the formation of superior‐quality FAPbI3 QD films, boasting enhanced photoluminescence (PL) and transport properties. Specifically, ODE has been replaced with octene (OCE), a shorter linear alpha olefin. Comparisons are drawn between the novel synthesis method and the conventional ODE‐based QD films, scrutinizing their optical properties and applicability in QD solar cells. The outcomes highlight distinctions in temperature‐dependent PL emission characteristics, revealing an unprecedented absolute PL QY of up to 84%, a notable improvement from the 70% achieved with ODE, along with enhanced transport properties. Furthermore, the performance of both systems in QD solar cells is evaluated for two values of layer thickness, 100 and 200 nm, to investigate the transport properties at the device level. The results exhibit a remarkable improvement from 200% to 150% in average power conversion efficiency (PCE) and consistently higher values for open‐circuit voltage and short‐circuit current density for the OCE‐based solar cell compared to an ODE‐based counterpart for both thickness values, reaching a striking 6.7% PCE for the best‐performing device despite the nonideal conditions.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3