An Emerging Stannous Fluoride Complex‐Enabled Highly Efficient Electron Collection and High Stability of Tin‐Based Perovskite Solar Cells

Author:

Tan Ziyu1,Xiong Hui1,Wu Min1,Yuan Songyang1,Zhan Mengdi1,Yang Wenjian1,Fan Jiandong23ORCID,Li Wenzhe23ORCID

Affiliation:

1. Department of Electronic Engineering College of Information Science and Technology Jinan University Guangzhou 510632 China

2. Institute of New Energy Technology College of Physics & Optoelectronic Engineering Jinan University Guangzhou 510632 China

3. Key Laboratory of New Semiconductors and Devices of Guangdong Higher Education Institutes Jinan University Guangzhou 510632 China

Abstract

In advancing high‐performance tin‐based perovskite solar cells, rapid crystallization and oxidation susceptibility are key challenges. SnF2, often added to control crystallization and oxidation, may impact cell performance, particularly postannealing. This study uses in situ variable‐temperature X‐Ray diffraction to examine SnF2's physicochemical behavior and phase transitions in these cells. The analysis highlights how residual SnF2 affects carrier recombination through energy‐level structures. Postfilm formation, SnF2 chemically interacts with 2,2′:6′,2″‐Terpyridine (TPY), forming a stannous fluoride complex that enhances electron transport and energy alignment. Crucially, TPY passivates surface defects and reduces tin vacancies, boosting device stability. The experimental results indicate that the unencapsulated devices in air atmosphere exhibit a stabilized power output retention rate above 90% of the initial efficiency after 29.5 h. After ≈800 h of continuous illumination in ambient air, the conversion efficiency can still be maintained above 100%. Remarkably, t90 (time to retain 90% efficiency) of the target device in pure oxygen is over 24 h.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

China Scholarship Council

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3