Development of a Plasmonic Light Management Architecture Integrated within an Interface Passivation Scheme for Ultrathin Solar Cells

Author:

Oliveira António J. N.123ORCID,Teixeira Jennifer P.1ORCID,Relvas Maria S.14ORCID,Teixeira Alexandra1ORCID,Violas André F.13ORCID,Oliveira Kevin1ORCID,Abalde‐Cela Sara1ORCID,Diéguez Lorena1ORCID,Cortinhal Mariana D.5ORCID,Barquinha Pedro M. C.5ORCID,Edoff Marika6ORCID,Fernandes Paulo A.127ORCID,Correia Maria Rosário P.23ORCID,Salomé Pedro M. P.13ORCID

Affiliation:

1. INL ‐ International Iberian Nanotechnology Laboratory Avenida Mestre José Veiga 4715‐330 Braga Portugal

2. i3N, Departamento de Física da Universidade de Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal

3. Departamento de Física Universidade de Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal

4. Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS) C/ Jenaro de la Fuente s/n, Campus Vida Universidade de Santiago de Compostela Santiago de Compostela 15782 España

5. CENIMAT|i3N, Department of Materials Science NOVA School of Science and Technology and CEMOP/UNINOVA Campus da Caparica 2829‐516 Caparica Portugal

6. Ångström Laboratory Department of Material Science and Engineering Division of Solar Cell Technology Uppsala University Uppsala 75121 Sweden

7. CIETI Departamento de Física Instituto Superior de Engenharia do Porto Instituto Politécnico do Porto Porto 4200‐072 Portugal

Abstract

In response to climate and resource challenges, the transition to a renewable and decentralized energy system is imperative. Ultrathin Cu(In,Ga)Se2 (CIGS)‐based solar cells are compatible with such transition due to their low material usage and improved production throughput. Despite the benchmark efficiency of CIGS technology, ultrathin configurations face efficiency drops arising from increased rear interface recombination and incomplete light absorption. Dielectric passivation schemes address rear interface recombination, but achieving simultaneous electrical and optical gains is crucial for thinning down the absorber. Plasmonic nanoparticles emerge as a solution, enhancing light interaction through resonant scattering. In the proposed architecture, the nanoparticles are encapsulated within a dielectric rear passivation layer, combining effective passivation and light trapping. A controlled deposition and encapsulation of individualized nanoparticles is achieved by an optimized process flow using microfluidic devices and nanoimprint lithography. With the developed plasmonic and passivated architecture, a 3.7 mA cm−2 short‐circuit current density and a 23 mV open‐circuit voltage improvements are obtained, leading to an almost 2% increase in light‐to‐power conversion efficiency compared to a reference device. This work showcases the developed architecture potential to tackle the electrical and optical downfalls arising from the absorber thickness reduction, contributing to the dissemination of ultrathin technology.

Funder

European Regional Development Fund

Publisher

Wiley

Reference111 articles.

1. IRENA International Renewable Energy Agency Market Integration of Distributed Energy Resources Innovation Landscape Brief Abu Dhabi 2019.

2. Decentralized Energy Systems, Based on Renewable Energy Sources

3. Peer-to-peer energy trading potential: An assessment for the residential sector under different technology and tariff availabilities

4. Review of blockchain-based distributed energy: Implications for institutional development

5. 2019 CIGS‐PV CIGS White Paper https://cigs‐pv.net/wortpresse/wp‐content/uploads/2019/04/CIGS_White_Paper_2019_online.pdf(accessed: January 2024).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3