Assessing Performance and Limitations of a Device‐Level Machine Learning Approach for Perovskite Solar Cells with an Application to Hole Transport Materials

Author:

Sala Simone1ORCID,Quadrivi Eleonora2,Biagini Paolo2,Po’ Riccardo2

Affiliation:

1. Technology, R&D & Digital Eni SpA Via Emilia 1 20097 San Donato Milanese Italy

2. New Energies Renewable Energies and Materials Science Research Center Eni SpA Via Giacomo Fauser 4 28100 Novara Italy

Abstract

Machine learning models have become widespread in materials science research. An open‐access and community‐driven database containing over 40 000 perovskite photovoltaic devices has been recently published. This resource enables the application of predictive data‐driven models to correlate device structure with photovoltaic performance, whereas the literature usually focuses on specific device layers. Herein, the concept of device‐level performance prediction is explored using gradient‐boosted regression trees as the core algorithm and Shapley values analysis to interpret and rationalize the results. The main pitfalls and conceptual limitations of the approach are discussed and correlated with the database structure and dimension, by comparing the performance of different choices of descriptors and dataset size. Evidence suggests that the additional features introduced herein, in particular chemical descriptors of perovskite additives, can boost regression performance at a device level. A specific model is finally trained to predict the performance of unseen devices and tested on experimental data from the literature. This task is found to be particularly challenging, as the ability of the model to generalize to a new chemical space is limited by several factors, including the amount and the quality of available data.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3