Plasma‐Driven Atomic‐Scale Tuning of Metal Halide Perovskite Surfaces: Rationale and Photovoltaic Application

Author:

Perrotta Alberto1,Covella Sara2,Russo Francesca34,Palumbo Fabio1,Milella Antonella3,Armenise Vincenza3,Fracassi Francesco13,Rizzo Aurora5,Colella Silvia1ORCID,Kaiser Waldemar6,Alothman Asma A.7,Mosconi Edoardo67,De Angelis Filippo689,Listorti Andrea35

Affiliation:

1. CNR NANOTEC – Istituto di Nanotecnologia – c/o Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” 70126 Bari Italy

2. Dipartimento di Chimica, Biologia e Biotecnologie Università degli Studi di Perugia 06123 Perugia Italy

3. Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” 70126 Bari Italy

4. Dipartimento di Ingegneria Elettrica e dell’Informazione Politecnico di Bari 70126 Bari Italy

5. CNR NANOTEC – Istituto di Nanotecnologia 73100 Lecce Italy

6. Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO) Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta” (CNR-SCITEC) 06123 Perugia Italy

7. Department of Chemistry College of Science King Saud University Riyadh 11495 Kingdom of Saudi Arabia

8. Department of Chemistry, Biology and Biotechnology University of Perugia and INSTM 06123 Perugia Italy

9. SKKU Institute of Energy Science and Technology (SIEST) Sungkyunkwan University Suwon 440-746 Korea

Abstract

The effective defect passivation of metal halide perovskite (MHP) surfaces is a key strategy to simultaneously tackle MHP solar cell performances enhancement and their stability under operative conditions. Plasma‐based dry processing is an established methodology for the modification of materials surfaces as it does not present the disadvantages often associated with wet treatments. This is becoming a fine tool to reach precise atomic‐scale engineering of the MHP surfaces. Herein is reported a comprehensive picture of the interaction between different plasma chemistries and MHP thin films. The impact of Ar, H2, N2, and O2 low‐pressure plasmas on MHP optochemical properties and morphology is correlated with the performance of photovoltaic devices and rationalized by density functional theory calculations. Strong morphological modifications and selective removal of the uppermost methylammonium moieties are deemed responsible for nonradiative surface defects suppression and higher solar cell performances. Ellipsometry and X‐ray photoelectron spectroscopies shine light on the subtle modifications induced by the different plasma environments, paving the way for the more effective engineering of plasma‐based (deposition) processing. Notably, for O2 plasma treatment, deep‐state traps induced by the formation of IO4 species are demonstrated and rationalized, highlighting the challenges in optimizing O2 plasma‐based solutions for MHP‐based devices.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3