Spectroscopic Evidence of Intraband Gap States in α‐SnWO4 Photoanodes Introduced by Interface Oxidation

Author:

Schnell Patrick12,Fernandez Erwin12,Obata Keisuke1,Rojas Jennifer Velázquez12,Favaro Marco1,Dittrich Thomas3,van de Krol Roel12,Abdi Fatwa F.1ORCID

Affiliation:

1. Institute for Solar Fuels Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Germany

2. Institut für Chemie Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany

3. Institute for Silicon Photovoltaics Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Schwarzschildstr. 8 12489 Berlin Germany

Abstract

α‐SnWO4 is an emerging photoelectrode material for photoelectrochemical water splitting, with several promising properties such as the favorable bandgap of 1.9 eV and suitable positions of the valence and conduction band. However, a major challenge remains: unprotected α‐SnWO4 undergoes surface passivation that blocks further charge transfer, and α‐SnWO4 electrodes that are covered with a protection/catalytic overlayer (e.g., NiOx, CoOx) show limited photovoltage. Earlier studies reveal that interfacial oxidation occurs due to the deposition of the overlayer. This negatively impacts the photovoltage that can be extracted, which is attributed to Fermi‐level pinning at the interface. The exact origin of this Fermi‐level pinning mechanism, however, remains unclear. In the present study, a combination of surface photovoltage analysis and hard X‐ray photoelectron spectroscopy is used to elucidate the electronic structure of the α‐SnWO4/oxide interface. Both techniques offer compelling and consistent evidence for the presence of a defect state that is energetically located within the bandgap energy of α‐SnWO4 and is likely responsible for the Fermi‐level pinning.

Funder

Helmholtz Association

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3