Flexible Perovskite Solar Cells on Ultra‐Thin Stainless‐Steel with a Power‐to‐Weight Ratio over 3000 W kg−1

Author:

Zhou Chenguang1,Xu Yibo1,Li Yue1,Du Kaihuai1,Li Xinzhu1,Dong Xu2,Li Lvzhou2,Yuan Ningyi1ORCID,Ding Jianning2ORCID

Affiliation:

1. School of Materials Science and Engineering Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology Changzhou University Changzhou 213164 Jiangsu P. R. China

2. Yangzhou Technological Innovation Institute for Carbon Neutralization Yangzhou University Yangzhou 225127 Jiangsu P. R. China

Abstract

Ultra‐thin stainless‐steel substrates with excellent water‐oxygen barrier properties and high thermal and electrical conductivities are suitable for the fabrication of lightweight and flexible perovskite solar cells (FPSCs). However, the deposition of dense perovskite films on stainless steel by the solution method is crucial because short circuits caused by perovskite holes are fatal to parallel structures. Herein, a single crystal (SC) is incorporated into the precursor solution to reduce the formation of holes in perovskite films on smooth stainless‐steel substrates. Additionally, a magnetic method is developed based on the properties of stainless steel to fix and fabricate FPSCs nondestructively on ultra‐thin stainless‐steel films with a thickness as low as 5 μm. Furthermore, 4,6‐dimethyl‐2‐mercaptopyrimidine (DMI) was introduced to passivate the surface of the perovskite film, optimizing the contact properties of the perovskite heterojunction and adjusting the energy level of the perovskite/C60 interface. Finally, ultra‐thin FPSCs achieved a champion power conversion efficiency (PCE) of 20.24% on an active area of 1.012 cm2 and a power‐to‐weight ratio over 3000 W kg−1. Moreover, under continuous illumination, the stainless‐steel substrates exhibited better photothermal stability than the polymer substrates. This method provides a basis for the fabrication of lightweight, low‐cost, and large‐area FPSCs.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3