Affiliation:
1. Department of Materials Science and Engineering Korea University Seoul 02841 Republic of Korea
2. SUNCAT Center for Interface Science and Catalysis Department of Chemical Engineering Stanford University Stanford CA 94305 USA
3. Photovoltaics Laboratory Korea Institute of Energy Research (KIER) Yuseong-gu Daejeon 34129 Republic of Korea
4. KU·KIST Green School Graduate School of Energy and Environment Korea University Seoul 02841 Republic of Korea
Abstract
Conformal deposition of perovskite films on textured silicon surfaces using a dry process is crucial for producing high‐performance perovskite/silicon tandem solar cells. Herein, a radio frequency magnetron sputtering process is used with a PbI2 target to deposit precursor films. Iodination, thermal annealing, and dimethyl sulfoxide treatment are employed as posttreatment processes to improve the stoichiometry, crystallinity, and surface morphology of the PbI2 precursor. The precursor films are converted into perovskite using direct contact conversion process, and the interfacial and bulk properties are enhanced by methylamine vapor annealing to fabricate perovskite solar cells with a power conversion efficiency of 12.2%. Also, 18.3% efficiency is confirmed at a wider voltage sweep range, which suggests that further efficiency improvement is possible by removing defects inside the perovskite. Finally, uniform perovskite films are conformally deposited on a 25 cm2 textured silicon surface. With such high‐efficiency potential and conformality, the method of sputtering PbI2 can open a new way to fabricate perovskite/silicon tandem solar cells.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献