Affiliation:
1. Laboratory for Solar Energy & Fuels (LSEF) School of Engineering The University of British Columbia Kelowna V1V 1V7 Canada
2. Helmholtz-Zentrum Berlin für Materialien und Energie GmbH 14109 Berlin Germany
Abstract
A dimethylformamide (DMF) and thiourea (TU)‐based ink deposition route is used to fabricate narrow bandgap (≈1.0 eV) CuIn(S,Se)2 (CISSe) films with Cu‐poor ([Cu]/[In] = 0.85), stoichiometric ([Cu]/[In] = 1.0), and Cu‐rich ([Cu]/[In] = 1.15) compositions for photovoltaic applications. Characterization of KCN‐ or (NH4)2S‐treated Cu‐rich absorber films using X‐ray diffraction and scanning electron microscopy confirms the removal of copper‐selenide phases from the film surface, while electron backscatter diffraction measurements and depth‐dependent energy‐dispersive X‐ray spectroscopy indicate remnant copper‐selenides in the absorber layer bulk. Contrary to best practice for vacuum‐processed cells, optimum [Cu]/[In] ratios appear to be stoichiometric, rather than Cu‐poor, in DMF–TU‐based CISSe devices. Accordingly, stoichiometric film compositions yield large‐grained (≈2 μm) absorber layers with smooth absorber surfaces (root mean square roughness <20 nm) and active area device efficiencies of 13.2% (without antireflective coating). Notably, these devices reach 70.0% of the Shockley–Queisser limit open‐circuit voltage (i.e., 526 mV at Eg of 1.01 eV), which is among the highest for ink‐based CISSe devices.
Funder
Natural Sciences and Engineering Research Council of Canada
Canada Foundation for Innovation
British Columbia Knowledge Development Fund
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献