Interface‐Engineered InAlN/Cu2O Photocathode with Accelerated Charge Separation for Boosting Photoelectrochemical Water Splitting

Author:

Zeng Hui1,Chang Jui‐Che2,Qu Yuanju1,Wang Weimin3,Birch Jens2,Hsiao Ching‐Lien2,Sun Jianwu1ORCID

Affiliation:

1. Semiconductor Materials Division Department of Physics, Chemistry and Biology (IFM) Linköping University Linköping SE‐58183 Sweden

2. Thin Film Physics Division Department of Physics, Chemistry and Biology (IFM) Linköping University Linköping SE‐58183 Sweden

3. MAX IV Laboratory Fotongatan 2 Lund SE‐22484 Sweden

Abstract

Cu2O has emerged as a promising material for sustainable hydrogen production through photoelectrochemical (PEC) water splitting, while inefficient charge separation remains one of the main challenges hindering its development. In this work, a new architecture of InAlN/Cu2O heterojunction photocathode is demonstrated by combining n‐type InAlN and p‐type Cu2O to improve the charge separation efficiency, thus enhancing PEC water‐splitting performance. The Pt/InAlN/Cu2O photoelectrode exhibits a photocurrent density of 2.54 mA cm−2 at 0 V versus reversible hydrogen electrode (VRHE), which is 3.21 times higher than that of Cu2O (0.79 mA cm−2 at VRHE). The enhanced PEC performance is explained by the larger built‐in potential Vbi of 1.43 V formed at the InAlN/Cu2O p–n junction than that in the single Cu2O photocathode (Vbi < 0.77 V), which improves the separation of the photogenerated carriers and thus relieves the bottlenecks of charge‐transfer kinetics at the electrode bulk and electrode/electrolyte interface. In this work, an avenue is opened for designing III‐nitrides/Cu2O heterojunction toward solar energy conversion.

Funder

Vetenskapsrådet

Swedish Foundation for International Cooperation in Research and Higher Education

Swedish Governmental Agency for Innovation Systems

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3