Affiliation:
1. Deep Space Exploration Laboratory Institute of Deep Space Sciences Hefei Anhui 230088 P. R. China
2. Hefei National Research Center for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 P. R. China
3. Energy‐Saving Building Materials Collaborative Innovation Center of Henan Province Xinyang Normal University Xinyang Henan 464000 P. R. China
Abstract
Antimony selenosulfide Sb2(SxSe1−x)3 is featured as a stable, environment‐friendly, and low‐cost light‐harvesting material with a tunable bandgap in the range of 1.1–1.8 eV, satisfying the requirement of indoor photovoltaics (IPVs). Up to now, the certified efficiency of Sb2(SxSe1−x)3 solar cell with 1.45 eV bandgap has broken 10% under standard illumination (AM1.5G). However, this bandgap is not suitable for IPVs in terms of spectral matching. Herein, for the first time, the effect of optical bandgap of Sb2(SxSe1−x)3 on photovoltaic performance of the devices under AM1.5G and indoor light conditions is studied systematically. It is discovered that although an appropriate Se/S atomic ratio is beneficial for improving the crystallinity of Sb2(SxSe1−x)3 film and passivating the trap states, the band gap remains a key factor in determining the suitability of this material for IPVs. As a result, solar cells based on Sb2S3 with a large bandgap of 1.74 eV achieve an optimal efficiency of 20.34% under 1000 lux indoor illumination. Moreover, a high IPV efficiency of over 16% can still be maintained within a wide bandgap range from 1.5 to 1.7 eV, demonstrating the great potential of Sb‐based chalcogenide as a light‐harvesting material for IPVs.
Funder
National Natural Science Foundation of China