Ag Alloying in Cu2−yAgyBa(Ge,Sn)Se4 Films and Photovoltaic Devices

Author:

Kim Yongshin12ORCID,Hempel Hannes3ORCID,Unold Thomas3ORCID,Mitzi David B.12ORCID

Affiliation:

1. Department of Mechanical Engineering and Materials Science Duke University Durham NC 27708 USA

2. Department of Chemistry Duke University Durham NC 27708 USA

3. Department Structure and Dynamics of Energy Materials Helmholtz-Zentrum Berlin für Materialien und Energie GmbH 14109 Berlin Germany

Abstract

Trigonal Cu2BaGe1−xSnxSe4 (CBGTSe) has recently gained interest as a potential photovoltaic absorber to target mitigation of antisite defect formation in Cu2ZnSn(S,Se)4. This study examines partial substitution of Cu by Ag as a potential approach to tune the properties of Ag‐incorporated CBGTSe in the following aspects: 1) phase stability and crystal structure as a function of Ag content; 2) film morphology and grain structure; 3) charge carrier properties; 4) band positions; and 5) charge carrier kinetics and recombination. Up to 20% of Cu can be substituted by Ag in CBGTSe, while above 20% a phase mixture appears. Increasing Ag content induces larger average grain size and reduced hole carrier densities. In contrast, photoelectron spectroscopy and photoluminescence measurements reveal negligible impact of Ag substitution on ionization potential (≈5.4 eV) and electron affinity (≈3.7 eV). Also, Ag content offers negligible impact on carrier lifetimes (few ns). Consistent with these fundamental properties, solar cells based on two different Ag/(Ag + Cu) ratios (≈0% and ≈20%) show comparable power conversion efficiencies (≈2.7–2.8%). These results indicate that CBGTSe films and solar cells may be less sensitive to Ag substitution compared to Cu2ZnSn(S,Se)4, at least at the current level of absorber and device optimization.

Funder

Basic Energy Sciences

National Science Foundation

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3