Affiliation:
1. Guangxi Key Laboratory of Information Materials Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education) School of Materials Science and Engineering Guilin University of Electronic Technology Guilin 541004 China
2. Department of Chemical Systems Engineering Graduate School of Engineering Nagoya University Nagoya 464-8603 Japan
3. Guilin Key Laboratory of Microelectronic Electrode Materials and Biological Nanomaterials & National Special Mineral Materials Engineering Technology Research Center and Guangxi Key Laboratory of Superhard Materials China Nonferrous Metal (Guilin) Geology and Mining Co., Ltd. Guilin 541004 China
Abstract
Solar‐driven evaporation using hydrogels and photothermal materials is a promising freshwater harvesting technology. Clean water is generally collected through evaporation and subsequent condensation, which requires high energy input due to the inherent high vaporization enthalpy of water. Therefore, it is a great challenge to harvest fresh water efficiently under natural irradiation. Herein, a temperature‐sensitive polyacrylamide‐poly(N‐isopropylacrylamide) (A‐PNIPAm) gel is designed to pursue a high water collection rate under low energy input conditions, where the facile and reversible hydrophilic/hydrophobic transition in gels enables the quick acquisition of liquid water. A multifunctional hydrogel (ADS‐PNIPAm) is prepared using polydopamine and sodium alginate with excellent adsorption/filtration properties, which can remove pollutants and generate fresh water rapidly. Consequently, the water collection rate of the ADS‐PNIPAm hydrogel reaches up to 5.89 and 9.8 kg m−2 h−1 under 0.6 and 1 sun irradiation, respectively, which are superior to the previously reported values. Furthermore, ADS‐PNIPAm displays an excellent effect on purifying sewage, such as oils, algae, and dyes pollutants. ADS‐PNIPAm is a promising material for a rapid freshwater generation with solar irradiation only, which provides a new avenue to alleviate water source scarcity.
Funder
Scientific Research and Technology Development Program of Guangxi
Natural Science Foundation of Guangxi Province
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献