Selenium‐Based Nonfused Electron Acceptors for Efficient Organic Photovoltaic Cells

Author:

Xiao Yang12,Yao Huifeng1,Yang Yi12,Song Chang Eun3,Wang Jingwen12,Yang Ni12,Li Zi1,Yu Yue12,Ryu Du Hyeon3,An Cunbin1,Shin Won Suk3,Hou Jianhui12ORCID

Affiliation:

1. State Key Laboratory of Polymer Physics and Chemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China

2. University of Chinese Academy of Sciences Beijing 100049 China

3. Energy Materials Research Center Korea Research Institute of Chemical Technology (KRICT) Yuseong-gu Daejeon 34114 South Korea

Abstract

Selenium heterocycles are widely used in constructing organic semiconductors due to their advantages in narrowing the bandgap and enhancing the intermolecular packing. Herein, the application of Se substitution in designing nonfused electron acceptors (nfEAs) is studied. From a thiophene analog (A4T‐16), three nfEAs with two (ASe‐1 and ASe‐2) or four (ASe‐3) selenophene units are synthesized. The results suggest that the incorporation of Se atoms will downshift the lowest unoccupied molecular orbit level, upshift the highest occupied molecular orbit level, and exhibit redshifted absorption spectra due to the enhanced quinoidal character. The crystallographic data indicate that Se‐containing molecules exhibit more planar conjugate skeleton and thus lead to the improvement of carrier mobility. When blended with a polymer donor PBDB‐TF, ASe‐1‐, ASe‐2‐, and ASe‐3‐based organic photovoltaic (OPV) cells obtain power conversion efficiencies of 12.7%, 11.0%, and 10.4%, respectively. This work provides a comprehensive study of the application of Se substitution in designing low bandgap nfEAs for efficient OPV cells.

Funder

National Natural Science Foundation of China

State Key Laboratory of Drug Research

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3