Optimal Design of Multilayer Optical Color Filters for Building‐Integrated Photovoltaic (BIPV) Applications

Author:

Ortiz Lizcano Juan Camilo1ORCID,Villa Simona12ORCID,Zhou Yilong1,Frantzi Georgia1,Vattis Kyriakos1,Calcabrini Andres1ORCID,Yang Guangtao1ORCID,Zeman Miro1ORCID,Isabella Olindo1ORCID

Affiliation:

1. Photovoltaics Materials and Devices Group Delft University of Technology Mekelweg 4 2628 CD Delft Netherlands

2. TNO, Energy Transition High Tech campus 21 5600 JW Eindhoven Netherlands

Abstract

Herein, the application of a comprehensive modeling framework that can help optimize the design of multilayered optical filters for coloring photovoltaic (PV) modules is presented based on crystalline silicon solar cells. To overcome technical issues related to the implementation of color filters (CFs) on PV modules, like glare and color instability, colorimetry metrics, such as the hue, chroma, luminance color space, and the quantitative concept of difference between two colors are extensively deployed. It is showcased in this work that designing colored modules with high hue and chroma stability is possible by using a front‐side texturing with edged geometry, like V‐shaped grooves and inverted pyramids, while obtaining colors with relatively high luminance values, indicating good brightness. Furthermore, it is argued that adapting the rear surface of the front glass with a random textured layout where the CF is applied can improve color and luminance stability without significant loss of chroma while eliminating glare. Finally, the models can be used to optimize the number of layers for a given CF, reducing unnecessary optical losses. Compared to a standard PV module, performance simulation of optimized, bright‐colored PV modules predicts relative energy yield losses ranging from 7% to 25%.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3