Strong Synergy between Pd Single Atom and Zn Vacancy Boosts Photocatalytic Pure Water Splitting

Author:

Zhang Yuqi1,Zhang Xia‐Guang2ORCID,Yang Shuangli1,Peng Huiping1,Fan Tingting1,Huang Zongyi1,Xue Fei1,Yang Tang1,Liu Shangheng1,Chen Zhou1,Kong Qingyu3,Hu Zhiwei4,Chan Ting‐Shan5,Yi Xiaodong1ORCID,Huang Xiaoqing1ORCID

Affiliation:

1. State Key Laboratory for Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China

2. Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China

3. Synchrotron Soleil, L’Orme des Merisiers St‐Aubin Gif‐sur‐Yvette 91192 CEDEX France

4. Max Planck Institute for Chemical Physics of Solids Nothnitzer Strasse 40 01187 Dresden Germany

5. National Synchrotron Radiation Research Center 101 Hsin‐Ann Road Hsinchu 30076 Taiwan

Abstract

Single‐atom and vacancy‐engineered photocatalysts have shown their remarkable strengths in improving carrier transfer dynamics, yet constructing the integration of single atoms and vacancies as the active site is still challenging. Herein, an icing‐assisted photochemical strategy has been employed to anchor Pd single atoms in Zn vacancies on CdxZn1−xS nanorods to form a Pd–S4 tetrahedron coordination structure, enabling exceptional photocatalytic water splitting performance in the absence of any sacrificial agents. Under visible light irradiation, the H2 evolution rate of Pd/Cd0.1Zn0.9S reaches 608.2 μmol g−1 h−1, which is around 229, 6.7, 6.1, and 2 times to that of ZnS, Cd0.1Zn0.9S, Pd/ZnS, and Pd NPs/Cd0.1Zn0.9S, respectively. Detailed experimental and theoretical analyses confirm that Pd–S hybridized electronic states and Pd single atoms are beneficial for enhancing the charge separation/transfer, accelerating the formation of H* and the release of H2.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3