Semitransparent Wide Bandgap Cu2ZnGe(S,Se)4 Thin‐Film Solar Cells: Role of the Sulfurization Process

Author:

Ruiz‐Perona Andrea1,Palma‐Lafuente David1,Sánchez Yudania2,Guc Maxim2,Kodalle Tim3,Salem Mohamed Ould2,Placidi Marcel24,Serna Rosalia5,Pérez‐Rodríguez Alejandro26,Merino José Manuel1,Caballero Raquel15ORCID

Affiliation:

1. Departamento de Física Aplicada Universidad Autónoma de Madrid C/ Francisco Tomás y Valiente 7 28049 Madrid Spain

2. IREC, Catalonia Institute for Energy Research C/ Jardins de les Dones de Negre 1 08930 Barcelona Spain

3. PVcomB‐Helmholtz Zentrum Berlin für Materialien und Energie Schwarzschildstrasse 3 12489 Berlin Germany

4. Departament d’Enginyeria Electrònica & Barcelona Center for Multiscale Science & Engineering Universitat Politècnica de Catalunya Av Eduard Maristany 10‐14 08019 Barcelona Spain

5. Instituto de Óptica “Daza de Valdés”‐CSIC C/Serrano 121 28006 Madrid Spain

6. Department d`Enginyeria Electrònica y Biomèdica Universitat de Barcelona IN2UB, C/Martí i Franquès 1‐11 08028 Barcelona Spain

Abstract

Semitransparent solar cells are very attractive due to the increasing integration in daily life. Kesterite‐type based thin‐film solar cells stand out because of its environmentally benign composition and outstanding stability. Herein, the influence of the back contact (Mo/V2O5/FTO or Mo/FTO) and thickness of Cu2ZnGe(S,Se)4 (CZGSSe) absorber layer, grown by sulfurization of coevaporated CZGSe, is investigated. To increase the transparency, thinner absorber layers with higher bandgap energy are produced. A double sulfur gradient through the CZGSSe layer with a considerable S content near the back contact and the formation of Mo(S,Se)2 phase at the back interface is detected for an absorber of only 400 nm thickness. Efficiencies of 3.1% and 2.7% are achieved for 1.2 μm CZGSSe‐based devices with Eg of 1.73 and 1.86 eV, respectively, while enabling transmittance values higher than 20% in the near‐infrared (NIR). The highest transmittance, 40% in the NIR, is achieved for the 400 nm CZGSSe‐based solar cells with Eg of 2.1 eV; however, a significant reduction of these devices’ performance is obtained due to the presence of ZnS secondary phase and a different back‐contact interface formation. This work presents the first promising semitransparent CZGSSe solar cells, opening new paths of applications.

Funder

Ministerio de Ciencia e Innovación

H2020 European Research Council

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3