The Influence of Falling Costs for Electrolyzers on the Location Factors for Green Hydrogen Production

Author:

Niepelt Raphael12ORCID,Schlemminger Marlon2ORCID,Bredemeier Dennis12ORCID,Peterssen Florian1ORCID,Lohr Clemens3ORCID,Bensmann Astrid3ORCID,Hanke-Rauschenbach Richard3ORCID,Brendel Rolf12ORCID

Affiliation:

1. Institut für Solarenergieforschung GmbH Am Ohrberg 1 DE-31860 Emmerthal Germany

2. Institute of Solid-State Physics Leibniz University of Hannover Appelstraße 2 DE-30167 Hannover Germany

3. Institute of Electric Power Systems – Electric, Energy Storage Systems Section Leibniz University of Hannover Appelstraße 9A DE-30167 Hannover Germany

Abstract

A fast and extensive build‐up of green hydrogen production is a crucial element for the global energy transition. The availability of low‐cost renewable energy at high operating hours of the electrolyzer is a central criterion in today's choice of location for green hydrogen production. It is analyzed how decreasing electrolyzer costs that are expected by many may influence this choice. The energy system optimization framework ESTRAM is used to find the optimum configuration of wind turbine, photovoltaic (PV), and electrolyzer capacity for covering a given hydrogen demand by locally produced green hydrogen in different European locations. It is found that PV is part of the cost‐optimal solution in 96% of 1372 statistical regions in Europe. Decreasing electrolyzer costs are favoring the utilization of PV in wind–solar hybrid plants. At low electrolyzer costs, pure solar hydrogen outperforms the hybrid variant in many places if hydrogen storage is available, even with few full operating hours per year. At the same time, production costs are converging significantly. The article adds a new perspective to the discussion, as it is systematically shown how further technology development may lead to a shift in locational advantages for green hydrogen production, what should be considered to avoid stranded assets when building infrastructure.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3