Passivation of Grain Boundaries and Defects in CZTSSe Solar Cells by In Situ Na Doping

Author:

Dong Liangzheng123,Tao Shengye123,Zhao Ming123,Zhuang Daming123ORCID,Gong Qianming123,Zhu Hongwei13,Wang Yafei123,Li Yuxian123,Wang Hanpeng123,Jia Mengyao123,Li Jing134

Affiliation:

1. School of Materials Science and Engineering Tsinghua University Beijing 100084 P. R. China

2. Key Laboratory for Advanced Materials Process Technology of Ministry of Education Tsinghua University Beijing 100084 P. R. China

3. State Key Laboratory of New Ceramics and Fine Processing Tsinghua University Beijing 100084 P. R. China

4. State Key Laboratory of Solid Waste Reuse for Building Materials Beijing Building Materials Academy of Science Research Beijing 100041 P. R. China

Abstract

Alkali metal doping plays a great role in improving the efficiency of Cu2SnZn(S, Se)4 (CZTSSe) thin film solar cells. However, it is unclear how to realize the ideal distribution of alkali metal in CZTSSe films. Meanwhile, the mechanisms of alkali metal doping are still controversial. Herein, Na‐doped CZTSSe cells are fabricated by magnetron sputtering with Na‐containing Cu2SnZnS4 target which is in situ doping and annealing in selenization atmosphere. The incorporation of Na enhances the diffusion of K from the substrates to the absorbers. Na doping can increase the contact potential at the grain boundaries, which has beneficial effects on reducing the carrier recombination at the grain boundaries. Furthermore, Na incorporation modifies the conduction band offset at the CdS/CZTSSe interface from −0.07 to 0.03 eV. The defects and recombination in different regions are quantitatively extracted. It is demonstrated that the optimized grain boundary electrical properties and the heterojunction band alignment passivate the defects of the depletion region, the heterojunction interface, and the quasineutral region. Finally, a total‐area efficiency of 11.18% has been achieved in CZTSSe solar cell with an in situ Na doping concentration of 0.6 at%.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3