Solar Interfacial Evaporation at the Water–Energy Nexus: Bottlenecks, Approaches, and Opportunities

Author:

Zhang Xu12ORCID,Yang Xiaotong2,Guo Peixun2,Yao Xingjie2,Cong Haibing1ORCID,Xu Bing2

Affiliation:

1. College of Architectural Science and Engineering Yangzhou University Yangzhou Jiangsu 225127 China

2. School of Municipal and Environmental Engineering Shandong Jianzhu University Jinan Shandong 250101 China

Abstract

Solar interfacial evaporation (SIE) technology has become an important research content in the water treatment fields gradually. It is low cost and sustainable, especially when water resources are scarce and energy infrastructure is not perfect and can deliver high‐quality freshwater. In recent years, along with the rise of new nanomaterials, water evaporation efficiency improved further; additionally, the efficient evaporation system structure design and thermal managements can improve the absorbance and latent heat recovery efficiently. These advanced researches make SIE efficiency is enhanced markedly, especially in small water evaporation equipment driven by solar energy wholly. It can achieve extremely high steam generation rate and possess an extensive application prospect. In this critical review, the photothermal mechanisms and material types of new photothermal materials, the basic structural design requirements of SIE systems primarily are discussed. On this basis, the applications of SIE techniques in the water–energy relations from the microscopic scale to the molecular level in the past decade are summarized. Finally, bottlenecks of the development of SIE technology, as well as the approaches and opportunities in the future, are discussed critically, new ideas are provided for the long‐range objective of utilizing renewable energy to generate clean water for environmentally sustainable development.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3