Affiliation:
1. Department of Chemistry and IRIS Adlershof Humboldt-Universität zu Berlin 12489 Berlin Germany
2. Pen-Tung Sah Institute of Micro-Nano Science and Technology Xiamen University Xiamen 361005 China
3. Core Facility BioSupraMol Institute of Chemistry and Biochemistry Department of Biology, Chemistry and Pharmacy Freie Universität Berlin 14195 Berlin Germany
4. Department of Physics and IRIS Adlershof Humboldt-Universität zu Berlin 12489 Berlin Germany
Abstract
Atomic‐level manipulation of catalysts is important for both fundamental studies and practical applications. Here, the central metal atom in an atomically precise Ag25 nanocluster (NC) is replaced with a single Pd, Pt, and Au atom, respectively, and employed as a model system to study the structure–property–activity relationship at the atomic level. While the geometric structures are well‐preserved after doping, the electronic structures of Ag25 NCs are significantly altered. The combination of Ag25 and TiO2 enhances the charge separation at the interface, exhibiting a 10 times higher hydrogen production rate in photocatalytic hydrogen evolution reaction compared to bare TiO2. Further results show that heteroatoms doping has a negative impact on performance, particularly in the cases of Pd and Au doping. Ultraviolet photoelectron spectroscopy measurements and density functional theory calculations suggest that the lower activities are due to an energy mismatch between the levels of doped NCs and TiO2. These findings not only reveal the impact of heteroatoms doping on the electronic properties and photocatalytic activities of NCs, but can also guide the design of heterometallic NCs for photocatalytic applications.
Funder
DFG
China Scholarship Council
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献