High‐Voltage Quasi‐Solid‐State Dye‐Sensitized Solar Cells Based on Copper Redox Shuttles

Author:

Lin Jianfei1,Wang Yinglin1,Li Yanan1,Shi Yuming1,Guo Xin1,Wang Lingling1,Liu Yichun1,Zhang Xintong1ORCID

Affiliation:

1. Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education Northeast Normal University Changchun 130024 China

Abstract

Electrolyte with copper redox shuttles has endowed dye‐sensitized solar cells (DSSCs) with a high open‐circuit voltage (V oc) over 1.0 V and promising efficiencies under the sun and indoor light, but further combining these copper redox shuttles with quasi‐solid‐state gel polymer electrolytes (GPEs) is still a great challenge. The crystallization of polymers inside GPEs is one of the important factors to limit the mass transport of large‐sized copper redox shuttles and dramatically reduce the efficiency of quasi‐solid‐state DSSCs. Herein, the copper‐based GPEs are fabricated via in situ UV‐induced copolymerization of acrylic monomers. This chemical cross‐linking strategy can significantly reduce the crystallinity of polymers inside the GPEs and thus improve the apparent diffusion coefficient two times compared with the generally used poly(ethylene oxide) GPEs. Finally, optimized GPEs, copolymerized by diacrylic and triacrylic monomers, successfully generate the quasi‐solid‐state DSSCs with an efficiency of 10.1% and a high V oc of 1.03 V. These photovoltaic parameters are comparable to those of DSSCs with liquid copper‐based electrolytes, demonstrating that the chemical cross‐linking is an effective strategy to fabricate high‐performance copper‐based GPEs. This strategy will facilitate the future efficiency and stability improvement of DSSCs for the commercial optoelectronic applications.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3