Moisture‐Induced High‐Quality Perovskite Film in Air for Efficient Solar Cells

Author:

Li Yan1,Zheng Yue1,Song Xiangfei1,Zhang Wanqi1,Huang Meilan2ORCID,Tao Xia1ORCID

Affiliation:

1. State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology 15 Beisanhuan East Road Beijing 100029 P. R. China

2. School of Chemistry & Chemical Engineering Queen's University Belfast Belfast BT9 5AG UK

Abstract

The quality of perovskite light‐harvesting layer is known to be the most critical factor for the performance of perovskite solar cells (PSCs). Herein, a facile ambient air‐aging process (AAP, 20%–30% RH) is adopted to realize the fabrication of high‐quality Cs0.15FA0.75MA0.1PbI3 perovskite films, thereby upgrading device performance. We find that the perovskite crystallinity after AAP for 10 d is greatly intensified, with large grain size and preferred crystal orientation along (110) and (220) planes. Comparative studies on the Ag‐based devices employing the perovskite films upon exposing to different atmospheres, i.e., dry N2, dry O2, N2, and H2O (20%–30% RH) and ambient air (20%–30% RH), demonstrate that H2O molecules in air rather than O2 molecules induce an effective defect passivation that holds the multiple functions in enhancing the quality of perovskite film, inhibiting the nonradiative recombination, prolonging the carrier lifetime, and improving the energy level matching, etc. Moreover, the positive effect of H2O in ambient atmosphere on cell performance is irreversible and remains even if moisture escapes. Finally, the average power conversion efficiency (PCE) of device based on the AAP‐induced film is increased from 18.24 ± 1.49 to 21.34 ± 0.76, with the champion PCE up to 22.60%. Also, the device with AAP exhibits better moisture resistance capability. Herein, it offers a viable AAP‐induced route for the perovskite films with superb optoelectronic properties that can be subsequently extended to the design and construction of other photovoltaic devices for practical application.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3