Molecular Design and High‐Throughput Virtual Screening of Electron Donor and Non‐fullerene Acceptors for Organic Solar Cells

Author:

Cao Rui1,Zhang Cai‐Rong1ORCID,Li Ming1,Liu Xiao‐Meng1,Zhang Mei‐Ling1,Gong Ji‐Jun1,Chen Yu‐Hong1,Liu Zi‐Jiang2,Wu You‐Zhi3,Chen Hong‐Shan4

Affiliation:

1. Department of Applied Physics Lanzhou University of Technology Lanzhou Gansu 730050 China

2. School of Mathematics and Physics Lanzhou Jiaotong University Lanzhou 730070 China

3. School of Materials Science and Engineering Lanzhou University of Technology Lanzhou Gansu 730050 China

4. College of Physics and Electronic Engineering Northwest Normal University Lanzhou Gansu 730070 China

Abstract

The complicated trilateral relationships among molecular structures, properties, and photovoltaic performances of electron donor and acceptor materials hinder the rapid improvement of power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, the database of 310 donor and non‐fullerene acceptor pairs is constructed and 39 molecular structure descriptors are selected. Four kinds of machine learning (ML) algorithms random forest (RF), extra trees regression, gradient boosting regression trees, and adaptive boosting are applied to predict photovoltaic parameters. The coefficient of determination, Pearson correlation coefficient, mean absolute error, and root mean square error are adopted to evaluate ML performance. The results show that the RF model exhibits the best prediction accuracy. The Gini important analysis suggests the fused ring and aromatic heterocycles are critical fragments in determining PCE. The molecular unit sets are constructed by cutting each donor and acceptor molecules in database. The 31 752 D‐π‐A‐π type donor molecules and 5 455 164 A‐π‐D‐π‐A type acceptor molecules are designed by recombination of molecular units, and 173 212 367 328 donor–acceptor pairs are generated by combining the newly designed donor and acceptor molecules. Based on the predicted PCE using the trained RF model, 42 donor–acceptor pairs exhibit the predicted PCE > 16%, in which the highest PCE is 16.24%.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3