Novel Strategy Toward Light Absorption Enhancement of Organic Solar Cells Using M13 Bacteriophage

Author:

Jun Minju1,Nguyen Thanh Mien2,Kim Sung-Jo2,Kim Na-Yeong1,Lee Ah Young3,Kim Jong H.3,Oh Jin-Woo12,Seo Ji-Youn12ORCID

Affiliation:

1. Department of Nano Energy Engineering & BK 21 PLUS Nano Convergence Technology Division Pusan National University Busan 46241 Republic of Korea

2. Bio-IT Fusion Technology Research Institute Pusan National University Busan 46241 Republic of Korea

3. Department of Molecular Science and Technology Ajou University Suwon 16499 Republic of Korea

Abstract

In organic photovoltaics (OPVs), the development of efficient light‐harvesting organic donor and acceptor materials and the design of a device structure with appropriate visible light transmittance play an important role in increasing their power conversion efficiency. Light manipulation strategies in OPV are widely used to improve photovoltaic performance. One of the most popular technologies is antireflective coating (ARC), which enhances light utilization in devices. However, ARC has been investigated less in OPV cells than in organic silicon solar cells. Herein, a novel approach that employs the natural biomaterial M13 bacteriophage (M13) as an intermediate layer with a thickness of a few nanometers between the hole transport layer (HTL) and indium tin oxide is investigated. The functional surface hydrophilicity, obtained by genetic manipulation of M13, improves the light transmittance by more than 84% over the visible wavelength range of the OPV cells. Furthermore, it enhances the coherence between the HTL and the photoactive layer. Therefore, the photocurrent density and power conversion efficiency significantly increase, producing a high photovoltaic performance. The proposed approach of using natural biomaterials is the basis for a novel, low‐cost, and eco‐friendly design for light manipulation in solar cells.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3