Advances in Top Transparent Electrodes by Physical Vapor Deposition for Buffer Layer‐Free Semitransparent Perovskite Solar Cells

Author:

Smirnov Yury12ORCID,Nigmetova Gaukhar3,Ng Annie13ORCID

Affiliation:

1. National Laboratory of Astana Nazarbayev University Astana 010000 Kazakhstan

2. Caelux Corporation 14030 Live Oak Ave Baldwin Park 91706 CA USA

3. Department of Electrical and Computer Engineering School of Engineering and Digital Sciences Nazarbayev University Astana 010000 Kazakhstan

Abstract

The advancements in halide perovskite materials, celebrated for their exceptional optoelectronic properties, have not only led to a remarkable increase in the efficiency of perovskite solar cells (PSCs) but also opened avenues for the development of semitransparent devices. Such devices are ideally suited for integration into building facades and for use in tandem solar cell configurations. However, depositing transparent electrodes (TEs) on top of the charge transport layers in PSC poses significant challenges. Physical vapor deposition (PVD), commonly used in the industry to prepare transparent conducting oxides (TCOs) as TEs, can introduce plasma‐induced damage during the process, which decreases the efficiency of the final devices. While incorporating a buffer layer is the typical approach to mitigate plasma damage, it also increases the complexity and costs of solar cell fabrication. This perspective focuses on the developments of buffer‐free semitransparent PSCs. It highlights the shift away from the typical approach of incorporating a buffer layer. Through a comprehensive analysis of recent research, this work presents successful cases of direct TCO deposition onto transport layers, evaluates scalability and stability, and concludes with recommendations for optimizing PVD processes in the fabrication of buffer‐free PSCs.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3