Analysis and Selection of Optimal Perovskite/Silicon Tandem Configuration for Building Integrated Photovoltaics Based on Their Annual Outdoor Energy Yield Predicted by Machine Learning

Author:

Nguyen Dong C.12ORCID,Asada Tomoki1,Raifuku Itaru1,Ishikawa Yasuaki1ORCID

Affiliation:

1. College of Science and Engineering Aoyama Gakuin University Sagamihara Kanagawa 252‐5258 Japan

2. Institute of Materials Science Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Cau Giay 100000 Hanoi Vietnam

Abstract

Accurate estimation of annual output energy yield () for perovskite/silicon (PSK/cSi) tandem solar cells is pivotal in assessing their suitability for building‐integrated photovoltaics (BIPV). This study pioneers five machine learning models of ensembles of trees, Gaussian process regressions, regression trees, support vector machines, and artificial neural networks (ANN) to predict output power density and compute for 2T, 3T, and 4T PSK/cSi tandem configurations in Japan's outdoor conditions. Seven predictive inputs of visible‐light solar irradiance, near‐infrared‐light solar irradiance, incident solar spectrum angle, solar module temperature, perovskite thickness, perovskite bandgap, and terminal of tandem configuration (T) drive the machine learning models. These models optimize predictions using k‐fold cross‐validation and Bayesian algorithms, showcasing superior precision in prediction compared to prior models. The ANN model emerges as the best model, displaying the minimal error in predicting , used to estimate across five Japanese locations (Gifu, Naganuma, Okinoerabu, Tosu, and Tsukuba). Results from these locations in blue‐rich solar spectrum zones identify the 4T PSK/cSi tandem configuration, featuring the most outstanding mean maximal (93.63, 263.02, 153.59, and 91.75 kWh m−2 for the east, rooftop, south, and west directions), as the prime candidate for BIPV applications.

Funder

New Energy and Industrial Technology Development Organization

Publisher

Wiley

Reference34 articles.

1. Homogenizing out-of-plane cation composition in perovskite solar cells

2. B.Emiliano 2022 https://www.pv‐magazine.com/2022/11/21/longi‐claims‐worlds‐highest‐silicon‐solar‐cell‐efficiency/.

3. Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells

4. J.Casey 2023 https://www.pv‐tech.org/longi‐unveils‐crystalline‐silicon‐perovskite‐tandem‐solar‐cell‐with‐conversion‐efficiency‐of‐33‐9/.

5. L.-L.Senaud B.Kamino J.Geissbühler G.Christmann G.Nogay J.Zhao F.Sahli P.Wyss D. L.Bätzner D.Lachenal Q.Jeangros C.Ballif B.PavietSalomon 2022 https://www.wcpec‐8.com/images/2022/‐programme/WCPEC‐8_Conference_Programme_web‐6.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3