High Efficiency Transparent and Semi‐Transparent Photovoltaics Based on a Layer‐By‐Layer Deposition

Author:

Bates Matthew1,Malhado Carson1,Yang Chenchen1,Herrera Christopher K.1,Lunt Richard R.12ORCID

Affiliation:

1. Department of Chemical Engineering and Materials Science Michigan State University East Lansing MI 48824 USA

2. Department of Physics and Astronomy Michigan State University East Lansing MI 48824 USA

Abstract

Transparent and semitransparent photovoltaics offer an exciting opportunity to integrate existing infrastructure with renewable energy. Organic photovoltaics (OPVs) are key enablers for wavelength‐selective transparent photovoltaics (TPVs) because of their selective absorption in the near‐infrared (NIR) that enables simultaneously high power conversion efficiency (PCE) and average visible transmittance (AVT). The recent rise of OPVs and TPVs has been accelerated in large part by the development of nonfullerene acceptors (NFAs) as highly adaptable deep NIR harvesting materials. Herein, sequential layer‐by‐layer (LBL) deposition of a selectively NIR absorbing nontraditional acceptor polymer is paired with a NIR absorbing donor IEICO‐4F that is typically considered an NFA via solvent orthogonality. With detailed optimization of the active layers and top electrode, semi‐transparent photovoltaics with a PCE of 8.8%, AVT of 40.9%, and a light utilization efficiency of 3.6% are demonstrated. The LBL approach enables explicit optical modeling of the device structure to extract exciton diffusion lengths >100 nm for both the polymer and IEICO‐4F with a transition in charge collection length regimes dependent on the acceptor thickness. Furthermore, the LBL deposition technique enables an investigation of the full range of polymer thickness and its impact on power generation and optical performance.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3