Mars powered descent phase guidance law based on reinforcement learning for collision avoidance

Author:

Zhang Yao1ORCID,Zeng Tianyi2ORCID,Guo Yanning3ORCID,Ma Guangfu3ORCID

Affiliation:

1. School of Engineering University of Southampton Southampton UK

2. Rolls‐Royce UTC in Manufacturing and On‐wing Technology University of Nottingham Nottingham UK

3. Department of Control Science and Engineering Harbin Institute of Technology Harbin China

Abstract

SummaryThis paper proposes a reinforcement learning‐based guidance law for Mars powered descent phase, which is an effective online calculation method that handles the nonlinearity caused by the mass variation and avoids collisions. The reinforcement learning method is designed to solve the constrained nonlinear optimization problem by using a critic neural network. Specifically, to cope with the position constraint (i.e., glide‐slope constraint) and the thrust force limit constraint, a modified cost function is proposed, and the associated Hamilton‐Jacobi‐Bellman equation is solved online without using an actor neural network, which significantly reduces the computational burden. The convergence of the critic neural network is proven. Simulation results show the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering,Biomedical Engineering,General Chemical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial;International Journal of Robust and Nonlinear Control;2023-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3