Automated tumor immunophenotyping predicts clinical benefit from anti‐PD‐L1 immunotherapy

Author:

Li Xiao1,Eastham Jeffrey1,Giltnane Jennifer M1ORCID,Zou Wei1,Zijlstra Andries1ORCID,Tabatsky Evgeniy1,Banchereau Romain1,Chang Ching‐Wei1,Nabet Barzin Y1ORCID,Patil Namrata S1ORCID,Molinero Luciana1ORCID,Chui Steve1,Harryman Maureen1,Lau Shari1,Rangell Linda1,Waumans Yannick2ORCID,Kockx Mark2ORCID,Orlova Darya1,Koeppen Hartmut1ORCID

Affiliation:

1. Genentech South San Francisco CA USA

2. CellCarta Antwerp Belgium

Abstract

AbstractCancer immunotherapy has transformed the clinical approach to patients with malignancies, as profound benefits can be seen in a subset of patients. To identify this subset, biomarker analyses increasingly focus on phenotypic and functional evaluation of the tumor microenvironment to determine if density, spatial distribution, and cellular composition of immune cell infiltrates can provide prognostic and/or predictive information. Attempts have been made to develop standardized methods to evaluate immune infiltrates in the routine assessment of certain tumor types; however, broad adoption of this approach in clinical decision‐making is still missing. We developed approaches to categorize solid tumors into ‘desert’, ‘excluded’, and ‘inflamed’ types according to the spatial distribution of CD8+ immune effector cells to determine the prognostic and/or predictive implications of such labels. To overcome the limitations of this subjective approach, we incrementally developed four automated analysis pipelines of increasing granularity and complexity for density and pattern assessment of immune effector cells. We show that categorization based on ‘manual’ observation is predictive for clinical benefit from anti‐programmed death ligand 1 therapy in two large cohorts of patients with non‐small cell lung cancer or triple‐negative breast cancer. For the automated analysis we demonstrate that a combined approach outperforms individual pipelines and successfully relates spatial features to pathologist‐based readouts and the patient's response to therapy. Our findings suggest that tumor immunophenotype generated by automated analysis pipelines should be evaluated further as potential predictive biomarkers for cancer immunotherapy. © 2024 The Pathological Society of Great Britain and Ireland.

Funder

Genentech

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3