Gender tagging of named entities using retrieval‐assisted multi‐context aggregation: An unsupervised approach

Author:

Das Sudeshna1ORCID,Paik Jiaul H.1

Affiliation:

1. Centre of Excellence in Artificial Intelligence Indian Institute of Technology Kharagpur India

Abstract

AbstractInferring the gender of named entities present in a text has several practical applications in information sciences. Existing approaches toward name gender identification rely exclusively on using the gender distributions from labeled data. In the absence of such labeled data, these methods fail. In this article, we propose a two‐stage model that is able to infer the gender of names present in text without requiring explicit name‐gender labels. We use coreference resolution as the backbone for our proposed model. To aid coreference resolution where the existing contextual information does not suffice, we use a retrieval‐assisted context aggregation framework. We demonstrate that state‐of‐the‐art name gender inference is possible without supervision. Our proposed method matches or outperforms several supervised approaches and commercially used methods on five English language datasets from different domains.

Publisher

Wiley

Subject

Library and Information Sciences,Information Systems and Management,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3