RF‐induced heating for active implantable medical devices in dual parallel leads configurations at 1.5 T MRI

Author:

Hu Wei1,Guo Ran1,Wang Qingyan1,Zheng Jianfeng1ORCID,Tsang Jeffrey2,Kainz Wolfgang3,Long Stuart1,Chen Ji1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering University of Houston Houston Texas 77204‐4005 USA

2. Saluda Medical, Ground Floor, 407 Pacific Highway Artarmon New South Wales 2064 Australia

3. High Performance Computing for MRI Safety Jasper Georgia USA

Abstract

PurposeThe Radiofrequency (RF)‐induced heating for an active implantable medical device (AIMD) with dual parallel leads is evaluated in this paper. The coupling effects between dual parallel leads are studied via simulations and experiments methods. The global transfer function technique is used to assess the RF‐induced heating for dual‐lead AIMDs inside four human body models.MethodsRF‐induced heating for spinal cord stimulator systems with 60 and 90 cm length leads are studied at three parallel dual‐lead configurations (closely spaced, 8 mm spaced, and 40 mm spaced) and a single‐lead configuration. The global transfer function method is used to develop the AIMD models of different configurations and is used for lead‐tip heating assessments inside human body models.ResultsIn simulation studies, the peak 1g specific absorption rate/temperatrue rises of dual parallel leads systems is lower than those from the single‐lead system. In experimental American Society for Testing and Materials phantom studies, the temperature rises for the single‐lead AIMD system can be 2.4 times higher than that from dual‐lead AIMD systems. For the spinal cord stimulator systems used in the study, the statistical analysis shows the RF‐induced heating of dual‐lead configurations are also lower than those from the single‐lead configuration inside all four human body models.ConclusionFor the AIMD system in this study, it shows that the coupling effects between the dual parallel leads of AIMD systems can reduce RF‐induced heating. The global transfer function for different spatial distance dual‐lead configurations can potentially provide a method for the RF‐induced heating evaluation for dual‐lead AIMD systems.

Funder

Division of Industrial Innovation and Partnerships

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3