Beef cattle feedlot runoff impacts on soil antimicrobial resistance

Author:

Speicher Scott1,Miller Daniel N.2ORCID,Durso Lisa M.2,Li Xu1,Woodbury Bryan. L.3,Eskridge Kent M.4,Schmidt Amy Millmier5ORCID

Affiliation:

1. Department of Civil Engineering University of Nebraska–Lincoln Nebraska Lincoln USA

2. USDA‐ARS Agroecosystem Management Research Unit Nebraska Lincoln USA

3. USDA‐ARS US Meat Animal Research Center Nebraska Clay Center USA

4. Department of Statistics University of Nebraska–Lincoln Nebraska Lincoln USA

5. Department of Biological Systems Engineering and Department of Animal Science University of Nebraska–Lincoln Nebraska Lincoln USA

Abstract

AbstractField application of beef cattle feedlot runoff may transport manure‐borne microbes and antibiotic resistant bacteria to agricultural soils eventually impacting deeper soils and groundwater. To evaluate this potential, total soil, antibiotic resistance (AR), and fecal indicator bacteria (Escherichia coli and Enterococcus) and the presence/abundance of AR genes were examined to a depth of 1.8 m in an agricultural field receiving long‐term application of feedlot runoff and compared to a nearby pasture receiving no runoff. While plate counts of total soil bacteria and cefotaxime‐resistant, erythromycin‐resistant, and tetracycline‐resistant bacteria decreased with depth on both fields (p < 0.001) by an average 2‐log10 colony forming unit g−1 to 1.8‐m depth, field differences were only observed with greater abundances of total soil and erythromycin‐resistant bacteria (p ≤ 0.026) in the runoff‐amended versus control field soils. Soil bacterial and fecal indicator bacterial isolates evaluated phenotypically for resistance to 12 antibiotics varied in range and sensitivity. Using a culture‐independent approach, erm(C) and tet(Q) were detected using polymerase chain reaction in 31% and 58% of runoff‐field samples throughout the soil profile. Detection of erm(C) and tet(Q) in the control field soil profile was less frequent (0% and 11%, respectively). Two other genes, erm(A) and tet(X) were not detected in any soil samples. Based upon these results, long‐term applications of beef cattle feedlot runoff may increase the total abundance of microorganisms in the surface and shallow soil, but the relative enrichment of AR was dependent upon the type of resistance evaluated and, more specifically, the genes targeted for analysis.

Funder

Agricultural Research Service

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3