Root traits and biomass production of drought‐resistant and drought‐sensitive arabica coffee varieties growing under contrasting watering regimes

Author:

Aman Mohammed12,Worku Mohammed2ORCID,Shimbir Tesfaye3,Astatkie Tessema4

Affiliation:

1. Jimma Agricultural Research Centre Ethiopian Institute of Agricultural Research Jimma Ethiopia

2. Department of Horticulture and Plant Sciences College of Agriculture and Veterinary Medicine Jimma University Jimma Ethiopia

3. Ethiopian Institute of Agricultural Research Addis Ababa Ethiopia

4. Faculty of Agriculture Dalhousie University Truro Nova Scotia Canada

Abstract

AbstractDrought is a major factor affecting coffee production, and different genotypes exhibit varying degrees of resistance to drought stress. We examined root traits and biomasses of drought‐resistant (74110, Angafa, Bultum, Chala, and Gawe) and drought‐sensitive (75227, Koti, Melko CH2, Menasibu, and Mokah) Coffea arabica varieties at seedling stage under contrasting watering regimes (water stressed and well watered) for 30 days followed by 15 days of recovery to identify the association between drought resistance and root traits and dry matter partitioning, and the impact of drought stress on growth performance of arabica coffee varieties. We used a split‐plot design with three blocks, where watering regime was the whole‐plot factor and variety was the subplot factor. During water‐stress and recovery periods, the interaction effect between watering regime and variety significantly affected root traits and dry matter partitioning, while the watering‐regime main effect affected biomass. We observed a higher (1) tap root diameter (0.34 cm), lateral root number (80.7), and root volume (4.7 cm−3) for 74110; (2) lateral root number (79.3), specific root length (24.8 cm g−1), and root‐mass ratio (0.41 g g−1) for Bultum; and (3) root length density (3.3–5.2 cm cm−3), root angle (42.6°–47.8°), root‐mass ratio (0.40–0.42 g g−1), and root‐shoot ratio (0.67–0.72 g g−1) for Angafa, Chala, and Gawe under water‐stressed condition. During both study periods, biomasses were much lower under water‐stressed than under well‐watered condition. The findings show the association between drought resistance and root traits and dry matter partitioning, and the impact of drought stress on growth performance of young arabica coffee.

Publisher

Wiley

Reference55 articles.

1. Growth response of Hararghie coffee accessions to soil moisture stress at seedling stage at Jimma, south west Ethiopia;Admasu R.;International Journal of Development Research,2018

2. Root lateral interactions drive water uptake patterns under water limitation

3. Trend, instability and decomposition analysis of coffee production in Ethiopia (1993–2019)

4. Baroni D. F.(2022).Root growth water relations and photosynthetic efficiency in clones of Coffea canephora[Doctoral thesis Universidade Estadual do Norte Fluminense Darcy Ribeiro].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3