Comparative analysis of nutrient absorption in rice cultivation: Aerobic versus anaerobic conditions in furrow‐irrigated rice

Author:

Chlapecka Justin L.1ORCID,Roberts Trenton L.2ORCID,Hardke Jarrod T.3

Affiliation:

1. Division of Plant Science and Technology University of Missouri Portageville Missouri USA

2. Department of Crop, Soil, and Environmental Sciences University of Arkansas System Division of Agriculture Fayetteville Arkansas USA

3. Department of Crop, Soil, and Environmental Sciences University of Arkansas System Division of Agriculture Stuttgart Arkansas USA

Abstract

AbstractRice (Oryza sativa L.) production in the Mid‐Southern United States has traditionally been under conventional flood (CF) production, namely, direct‐seeded and delayed‐flood production. However, furrow‐irrigated rice (FIR) has grown to comprise over 15% of Arkansas’ and 30% of Missouri's rice hectarage. The uptake of several nutrients, including phosphorus (P), potassium (K), and zinc (Zn), has been shown to differ between aerobic and flooded rice production. Hence, a nutrient uptake survey was conducted from 2018 to 2020 in FIR fields to determine the difference in nutrient uptake (macro‐ and micronutrients) between the upper generally aerobic environment at the top of the field and the bottom of the field, where a generally anaerobic or flooded environment existed from R1 to maturity. Aboveground biomass samples were taken at R3 from four nitrogen (N) treatments at the top and bottom of five sites on a clayey soil texture and four sites on a loamy soil texture. Results suggest that there is significantly lower P, K, sodium (Na), and manganese (Mn) uptake at the top of the field compared to the bottom of the field on both soil textures. Additionally, the N treatments that yielded the highest biomass generally led to the greatest uptake of all nutrients examined. The decrease in P and K uptake in the aerobic portion of an FIR field suggests that they may require altered fertilizer recommendations compared to the traditional CF rice system.

Funder

Arkansas Rice Research and Promotion Board

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3