GGE biplot analysis of genotype by environment interaction and grain yield stability of oat (Avena sativa L.) in Ethiopia

Author:

Kebede Gezahagn12ORCID,Worku Walelign2,Jifar Habte3,Feyissa Fekede4

Affiliation:

1. Holetta Agricultural Research Center Holetta Ethiopia

2. School of Plant and Horticultural Sciences Hawassa University Hawassa Ethiopia

3. Debre Zeit Agricultural Research Center Debre Zeit Ethiopia

4. Ethiopian Institute of Agricultural Research Addis Ababa Ethiopia

Abstract

AbstractA total of 24 oat genotypes were evaluated across 9 environments using a randomized complete block design with 3 replications. The combined analysis of variance indicated that grain yield was significantly affected by genotype, environment, and genotype by environment interaction (GEI). The environment's main effect explained 44.62% of the total variation, whereas the genotype and GEI captured 28.84% and 26.54%, respectively. The genotype plus genotype by environment (GGE) biplot of the first two principal components also explained (PC1 = 68.46%) and (PC2 = 11.84%) of the GEI sum of squares. G8 (SRCPX80Ab2267), G17 (SRCPX80Ab2310), G5 (Sorataf), G14 (Was), G19 (Bonsa), G22 (SRCPX80Ab2691), G12 (SRCPX80Ab2291), G11 (SRCPX80Ab2806), G4 (CI‐8251), and G16 (Jassari), which were located at the left side of the PC1, showed better grain yield performance. The smaller PC1 values were observed for G19, G14, G8, G11, G12, G17, and G22 showing better grain yield stability. The ideal genotype located at the center of the concentric circles was G19, whereas the desirable genotypes were G14, G8, G11, G12, G17, and G22. The polygon view of the GGE biplot showed that the first mega‐environment contains environment E3 (Ginchi) with G16, whereas the second mega‐environment contains environments E7 (Bekoji) and E8 (Kuyu) with G12 being the winning genotypes. The vertices of the fourth mega‐environments (E6—Kulumsa) were G8 and G17, whereas the remaining environments grouped in the third mega‐environment without vertex genotype. Furthermore, E2 (Ada‐Berga) was an ideal test environment, whereas E5 (D/Zeit), E1 (Holetta), and E4 (Jeldu) were identified as favorable environments. Regarding the mean grain yield and stability, G19, G14, G8, G11, G12, G17, and G22 were the best genotypes that can be considered adapted genotypes to wider environments.

Publisher

Wiley

Subject

Plant Science,Soil Science,Agricultural and Biological Sciences (miscellaneous)

Reference58 articles.

1. Parametric stability analyses for grain yield of durum wheat

2. Analysis of genotype by environment interaction for grain yield of intermediate maturing drought tolerant top-cross maize hybrids under rain-fed conditions

3. Ashenafi A.(2018).Genetic diversity relation between characters and aluminum toxicity tolerance of Avena species from Ethiopia[Doctoral dissertation Addis Ababa University Addis Ababa Ethiopia].

4. Astatke H.(1979).Forage crops and pasture management in the highlands of Ethiopia(Forage and Range Bulletin No. 2).IAR (Institute of Agricultural Research).

5. Statistical Analyses of Multilocation Trials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3