E-Cadherin-Mediated Cell–Cell Contact Is Critical for Induced Pluripotent Stem Cell Generation

Author:

Chen Taotao1,Yuan Detian1,Wei Bin1,Jiang Jing1,Kang Jiuhong12,Ling Kun3,Gu Yijun1,Li Jinsong1,Xiao Lei1,Pei Gang12

Affiliation:

1. Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China

2. Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China

3. Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota, USA

Abstract

Abstract The low efficiency of reprogramming and genomic integration of virus vectors obscure the potential application of induced pluripotent stem (iPS) cells; therefore, identification of chemicals and cooperative factors that may improve the generation of iPS cells will be of great value. Moreover, the cellular mechanisms that limit the reprogramming efficiency need to be investigated. Through screening a chemical library, we found that two chemicals reported to upregulate E-cadherin considerably increase the reprogramming efficiency. Further study of the process indicated that E-cadherin is upregulated during reprogramming and the established iPS cells possess E-cadherin-mediated cell–cell contact, morphologically indistinguishable from embryonic stem (ES) cells. Our experiments also demonstrate that overexpression of E-cadherin significantly enhances reprogramming efficiency, whereas knockdown of endogenous E-cadherin reduces the efficiency. Consistently, abrogation of cell–cell contact by the inhibitory peptide or the neutralizing antibody against the extracellular domain of E-cadherin compromises iPS cell generation. Further mechanistic study reveals that adhesive binding activity of E-cadherin is required. Our results highlight the critical role of E-cadherin-mediated cell–cell contact in reprogramming and suggest new routes for more efficient iPS cell generation.

Funder

Ministry of Science and Technology

National Natural Science Foundation of China

Shanghai Municipal Commission for Science and Technology

Natural Science Foundation of Shanghai

Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3