Shear connector design using data analytics approaches

Author:

Koh Hyeyoung1,Blum Hannah B.1

Affiliation:

1. University of Wisconsin‐Madison WI USA

Abstract

AbstractThe field of structural engineering can be augmented with advanced data analysis techniques. Structural engineering applications consist of datasets which may include experimental or/and computational data, and can be used to derive design provisions based on the measured data. Cluster analysis is a data exploration technique that involves identifying groups in a dataset and providing relationships between input parameters, which could supplement existing engineering intuition and knowledge. As a test case, this paper reanalyzes the existing test data for shear connectors using a cluster analysis. A database of push‐out tests was established from the literature, which was then sorted into subsets using two methods: (1) manual grouping based on engineering judgment and (2) Gaussian mixture models that detect clusters based on relationships between parameters in the data. The recommended data groupings based on the two methods were compared. Reliability analyses were conducted on each data subset to determine the recommended resistance factors. The results were compared to the resistance factors prescribed in the AISC 360‐22 Specification, which now permits a performance‐based alternative for the shear connector design.

Funder

American Institute of Steel Construction

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference32 articles.

1. Journal of Constructional Steel Research;Mujagić J. U.;65,2009

2. Journal of Constructional Steel Research;Pallarés L.;66,2010

3. LRFD resistance factor for cold-formed steel compression members

4. Journal of construction engineering and management;Ji W.;144,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3