Accuracy of a non‐exercise method using seismocardiography for the estimation of V̇O2peak in sub‐elite football players

Author:

Hansen Mikkel Thunestvedt1ORCID,Rømer Tue1,Lange Kristine Kjær1,Dela Flemming123,Helge Jørn Wulff1

Affiliation:

1. Xlab Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark

2. Department of Geriatrics Bispebjerg University Hospital Copenhagen Denmark

3. Department of Human Physiology and Biochemistry Riga Stradiņš University Riga Latvia

Abstract

AbstractA non‐exercise method equation using seismocardiography for estimating V̇O2peak (SCG V̇O2peak) has previously been validated in healthy subjects. However, the performance of the SCG V̇O2peak within a trained population is unknown, and the ability of the model to detect changes over time is not well elucidated. Forty‐seven sub‐elite football players were tested at the start of pre‐season (SPS) and 36 players completed a test after eight weeks at the end of the pre‐season (EPS). Testing included an SCG V̇O2peak estimation at rest and a graded cardiopulmonary exercise test (CPET) on a treadmill for determination of V̇O2peak. Agreement between SCG V̇O2peak and CPET V̇O2peak showed a large underestimation at SPS (bias ± 95% CI: −9.9 ± 1.8, 95% Limits of Agreement: 2.2 to −22.0 mL·min−1 kg−1). At EPS no interaction (p = 0.3590) but a main effect of time (p < 0.0001) and methods (p < 0.0001) was observed between SCG and CPET V̇O2peak. No correlation in V̇O2peak changes was observed between SCG and CPET (r = −20.0, p = 0.2484) but a fair agreement in classifying the correct directional change in V̇O2peak with the SCG method was found (Cohen's κ coefficient = 0.28 ± 0.25). Overall, the SCG V̇O2peak method lacks accuracy and despite being able to estimate group changes, it was incapable of detecting individual changes in V̇O2peak following a pre‐season period in sub‐elite football players. The SCG algorithm needs to be further adjusted and the accuracy and precision improved for the method to be applicable for use within a trained population.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3