Less fuel for the next fire? Short‐interval fire delays forest recovery and interacting drivers amplify effects

Author:

Braziunas Kristin H.12ORCID,Kiel Nathan G.1ORCID,Turner Monica G.1ORCID

Affiliation:

1. Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin USA

2. TUM School of Life Sciences Technical University of Munich Freising Germany

Abstract

AbstractAs 21st‐century climate and disturbance dynamics depart from historic baselines, ecosystem resilience is uncertain. Multiple drivers are changing simultaneously, and interactions among drivers could amplify ecosystem vulnerability to change. Subalpine forests in Greater Yellowstone (Northern Rocky Mountains, USA) were historically resilient to infrequent (100–300 year), severe fire. We sampled paired short‐interval (<30‐year) and long‐interval (>125‐year) post‐fire plots most recently burned between 1988 and 2018 to address two questions: (1) How do short‐interval fire, climate, topography, and distance to unburned live forest edge interact to affect post‐fire forest regeneration? (2) How do forest biomass and fuels vary following short‐interval versus long‐interval severe fires? Mean post‐fire live tree stem density was an order of magnitude lower following short‐interval versus long‐interval fires (3240 vs. 28,741 stems ha−1, respectively). Differences between paired plots were amplified at longer distances to live forest edge. Surprisingly, warmer–drier climate was associated with higher seedling densities even after short‐interval fire, likely relating to regional variation in serotiny of lodgepole pine (Pinus contorta var. latifolia). Unlike conifers, density of aspen (Populus tremuloides), a deciduous resprouter, increased with short‐interval versus long‐interval fires (mean 384 vs. 62 stems ha−1, respectively). Live biomass and canopy fuels remained low nearly 30 years after short‐interval fire, in contrast with rapid recovery after long‐interval fire, suggesting that future burn severity may be reduced for several decades following reburns. Short‐interval plots also had half as much dead woody biomass compared with long‐interval plots (60 vs. 121 Mg ha−1), primarily due to the absence of large snags. Our results suggest differences in tree regeneration following short‐interval versus long‐interval fires will be especially pronounced where serotiny was high historically. Propagule limitation will also interact with short‐interval fires to diminish tree regeneration but lessen subsequent burn severity. Amplifying driver interactions are likely to threaten forest resilience under expected trajectories of a future fire.

Funder

Joint Fire Science Program

National Science Foundation

Philanthropic Educational Organization

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Reference108 articles.

1. Robust Post-Matching Inference

2. Projected increases in western US forest fire despite growing fuel constraints

3. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015

4. Impact of anthropogenic climate change on wildfire across western US forests

5. From Sink to Source: Changing Climate and Disturbance Regimes Could Tip the 21st Century Carbon Balance of an Unmanaged Mountain Forest Landscape;Albrich K.;Forestry: An International Journal of Forest Research,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3