Residual activity of spinosad applied as a soil drench to tomato seedlings for control of Tuta absoluta

Author:

Erasmus Reynardt1,van den Berg Johnnie1,van Rensburg Peet Jansen2,du Plessis Hannalene1ORCID

Affiliation:

1. Unit for Environmental Sciences and Management, IPM Program North‐West University Potchefstroom South Africa

2. Focus Area: Human Metabolomics North‐West University Potchefstroom South Africa

Abstract

AbstractBACKGROUNDTuta absoluta (Lepidoptera: Gelechiidae) is difficult to control by means of foliar insecticides, partly because of the endophytic feeding behavior of its larvae. The biopesticide spinosad is applied as a foliar spray for control of T. absoluta and has systemic properties when applied as a soil drench to the growing medium of tomato plants. The aims of this study were to determine the: (i) instar‐dependent tolerance of larvae to spinosad; (ii) efficacy of spinosad drench application for the control of larvae; (iii) residual period of systemic activity of spinosad in leaves and fruit after drenching; and (iv) effect of spinosad drenching on tomato plant growth parameters.RESULTSThe estimated LC50 value (Lethal Concentration at which 50% of the larvae died) differed between instars. The LC50 for second‐instar larvae (0.41 ppm) to spinosad was significantly lower than that for third‐ (0.64 ppm) and fourth‐instar (0.63 ppm) larvae. The LC80 value (Concentration at which 80% of the larvae died) for fourth‐instar larvae (2.48 ppm) was 2.6‐ and 1.7‐fold higher than that for the second‐ and third‐instar larvae, respectively. The spinosad concentration recorded in leaves at 25 days after treatment (DAT; 0.26 μg g−1) was significantly lower than that in leaves sampled at 3, 10 and 15 DAT. High larval mortalities were, however, recorded for the duration of the experiment, which lasted 25 days (equivalent to one T. absoluta generation).CONCLUSIONSystemic spinosad effectively controlled T. absoluta larvae over a prolonged period. However, drenching this insecticide violates the recommendation of the Insecticide Resistance Action Committee to avoid treating consecutive insect generations with the same mode of action and can therefore result in the evolution of insecticide resistance. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3