Mixed Lagrangian formulation for modeling structures with clutched inerter devices

Author:

Zhang Yixuan1,Málaga‐Chuquitaype Christian1ORCID,Lavan Oren2

Affiliation:

1. Department of Civil and Environmental Engineering Imperial College London London UK

2. Faculty of Civil and Environmental Engineering Technion‐Israel Institute of Technology Haifa Israel

Abstract

AbstractInerters (ID) and Clutched Inerter Devices (CID) are a novel technology with demonstrated seismic control potential. However, the inherent nonlinearity and discontinuity of the clutching phenomena in CIDs can pose significant challenges for their accurate numerical modeling. In general, conventional existing methods either oversimplify the physics involved or are sensitive to the step size and thus are inherently unstable, demanding excessive numerical resources. Most relevant studies to date have focused on small‐scale systems with a limited number of inerters and have used simplified models due to the lack of analysis tools. At the same time, the Mixed Lagrangian Formulation (MLF), has proven to be a powerful tool for simulating non‐smooth dynamics phenomena. This paper presents an alternative way of modeling the behavior of CIDs in both MLF and conventional finite element method. We put forward an original formulation of the inerter element, clutching behavior, and the inerter‐related dissipation model, as well as their associated computational scheme in MLF and the equivalent construction in FEM. The newly proposed CID element in MLF is then implemented and validated through three examples, including a single degree of freedom system, a multi 10‐storey moment resisting frame (MRF), and a 10‐storey self‐centering concentrically braced frame (SC‐CBF) with multiple rocking sections. The results are compared to those from existing models used for clutching inerter and to the proposed FE model. Finally, the advantages of using the MLF framework and salient characteristics of the structures equipped with clutched inerters are discussed. The modeling strategy proposed in this work empowers researchers to simulate structures with a larger number of degrees of freedom, equipped with a considerable amount of inerter‐based devices, with reduced effort and improved computational performance.

Publisher

Wiley

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3