Viability of non‐edible oilseed plants and agricultural wastes as feedstock for biofuels production: a techno‐economic review from an African perspective

Author:

Kichonge Baraka12ORCID,Kivevele Thomas1

Affiliation:

1. School of Materials Energy Water and Environmental Sciences (MEWES) The Nelson Mandela African Institution of Science and Technology (NM‐AIST) Arusha Tanzania

2. Mechanical Engineering Department Arusha Technical College Arusha Tanzania

Abstract

AbstractGiven the benefits of biofuels over conventional fuels, there is concern that widespread production of biofuels from edible feedstocks to meet demand will lead to food insecurity and other socioeconomic challenges. Thus, the goal of this research is to look into the techno‐economic potential of non‐edible oilseed plants and agricultural wastes as primary feedstocks for biofuel production in Africa. The inability of biofuel to cope in the fuel market has been demonstrated to be due to the high production costs, which limit profitability because the end price is heavily influenced by that of conventional fuel. However, the high production costs are entirely due not only to components such as feedstock, conversion processes, and infrastructure but also to a lack of techno‐economic assessment (TEA). African biofuel production can be competitively industrialized through the adoption of strong supportive policies and programs. Adoption of these policies and programs is critical for capitalizing on the benefits of non‐edible feedstocks in biofuel production while also boosting rural development through job creation. Techno‐economic assessment of conversion processes and infrastructure is recommended to provide a clear picture of the techno‐economic aspects, serving as a blueprint for the design of biofuel production facilities. Further, TEA has been shown to be a useful tool in the development process of new technologies aimed at lowering overall production costs and making biofuel more affordable. The combination of TEA and enabling policies and programs will increase the price competitiveness of biofuels, allowing them to capture a sizable share of the fuel market. © 2023 Society of Industrial Chemistry and John Wiley & Sons Ltd.

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3