Seasonal and perennial water populations of an endemic crayfish differ in behavioural responses to drying but not metabolism

Author:

Emery‐Butcher Holly E.1ORCID,Beatty Stephen J.1ORCID,Robson Belinda J.1ORCID

Affiliation:

1. Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute Murdoch University Murdoch Western Australia Australia

Abstract

AbstractCrayfish perform important roles within freshwater ecosystems, including in regions where global warming is causing prolonged drying of waterbodies. However, little is known about responses of crayfish to habitat drying from both a behavioural and physiological perspective. We compared burrowing ability, survival and metabolism of the crayfish Cherax quinquecarinatus from a seasonal stream and a perennial stream. Burrowing ability and crayfish survival were quantified in a mesocosm experiment contrasting sediment type (sand vs. clay/sand mixture) and water regime. Aerobic scope, standard metabolic rate (SMR) and maximum metabolic rate (MMR) were also compared using intermittent flow respirometry. Crayfish from the seasonal stream showed limited burrowing ability but higher survival in the drying treatment, while the perennial stream crayfish burrowed strongly in the clay/sand sediment. Higher survival suggests that crayfish from seasonal streams might be physiologically better adapted to drying. Larger crayfish burrowed more proficiently, reaching the saturated hyporheic zone refuge in the clay/sand sediment treatment. SMR/MMR/aerobic scope did not differ between populations or respirometry runs; however, SMR differed between individuals, perhaps due to personality traits. There was a significant negative relationship between MMR/aerobic scope and weight. Sediment type may limit C. quinquecarinatus burrowing and persistence through drying. Crayfish populations did not differ in terms of metabolism; however, crayfish from seasonal habitats may possess more efficient physiological adaptations to drying. This study highlights the need for greater research attention on the effects of climatic drying on both the behaviour and the physiology of species exposed to climate change.

Funder

Murdoch University

Australian Government

Publisher

Wiley

Subject

Earth-Surface Processes,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3