A research on destress mechanism of underlying roadway for gas outburst prevention in deep, low‐permeability coal seam

Author:

Yin Jiadi1,Wu Yu1ORCID,Zhang Hualei2,Cao Jianjun34

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering China University of Mining and Technology Xuzhou Jiangsu China

2. Key Laboratory of Safe and Effective Coal Mining of the Ministry of Education Anhui University of Science and Technology Huainan China

3. State Key Laboratory of the Gas Disaster Detecting Preventing and Emergency Controlling, China Coal Technology and Engineering Group, Chongqing Research Institute Chongqing China

4. Gas Research Branch, China Coal Technology and Engineering Group, Chongqing Research Institute Chongqing China

Abstract

AbstractGas outbursts pose a significant threat in the mining of deep low‐permeability coal seams. As mining depth increases, there is a rise in coal and gas dynamic disasters, rendering the gas outburst prevention technology from shallow mining areas unsuitable for deep coal seam exploitation. Addressing the challenges posed by deep, highly gassy coal seams, this study introduces a gas outburst prevention technology integrating destressing in the close distance underlying roadway with gas drainage. The article investigates the relevant technical parameters and assesses the feasibility of this approach. First, it establishes destressing model for the underlying roadway to derive an analytical solution for stress distribution in the coal seam. Second, appropriate technical parameters are designed considering the seepage characteristics of gas in the coal seam. Finally, the gas drainage technical scheme is implemented at Qujiang coal mine to verify its on‐site effectiveness. Field test results indicate an increase in gas permeability within the coal seam following destressing in the underlying roadway, accompanied by significant improvements in the efficiency of gas drainage and the advancement speed of the coal roadway. Specifically, the driving speed of the coal roadway has escalated from 40 m/month to 150 m/month. These outcomes demonstrate the potential of this technology as a promising approach for preventing gas outbursts in the challenging context of deep, low‐permeability coal seams, facilitating swift coal roadway excavation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3