Application of machine learning in monitoring fouling in heat exchangers in chemical engineering: A systematic review

Author:

Villa Lucas1,Zanini Brusamarello Claiton1ORCID

Affiliation:

1. Universidade Tecnológica Federal do Paraná (UTFPR), Campus Francisco Beltrão Departamento Acadêmico de Engenharias (DAENG) Francisco Beltrão Brazil

Abstract

AbstractThe present work consists of a systematic literature review that examines studies on using machine learning to monitor fouling in heat exchangers in the chemical engineering area. The research was conducted in four renowned databases: SCOPUS, Science Direct, IEEE, and Web of Science. The main objective of the investigation was to identify the most prevalent machine learning methods, evaluate their performance, and analyze the challenges associated with their implementation and prospects. Using the StArt software, seven relevant scientific papers from the established review protocol. The most frequently identified methods were support vector machine (SVM) and k‐nearest neighbours (k‐NN), followed by decision tree. However, long‐term and short‐term predictors and long short‐term memory (LSTM) and non‐linear autoregressive with exogenous inputs (NARX) algorithms were the most successful, followed by Gaussian process regression (GPR), SVM, k‐NN, and improved grey wolf optimization–support vector regression (IGWO‐SVR) algorithms. Although these methods inspire confidence, it is important to highlight that they are still in the software testing phase. Key gaps identified include the need for further studies on real industrial applications and the integration of advanced sensors and measurement systems. Future directions point to developing more robust and generalized algorithms capable of dealing with the complexity of real systems.

Funder

Universidade Tecnológica Federal do Paraná

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3