Application of uncertainty quantification techniques in the framework of process safety studies: Advanced dispersion simulations

Author:

Bellegoni Marco1ORCID,Marroni Giulia1ORCID,Mariotti Alessandro1ORCID,Salvetti Maria Vittoria1ORCID,Landucci Gabriele1ORCID,Galletti Chiara1ORCID

Affiliation:

1. Department of Civil and Industrial Engineering University of Pisa Pisa Italy

Abstract

AbstractIn the framework of process safety studies, consequence assessment of accidental scenarios is a crucial step affecting the eventual risk profile associated with the facilities under analysis. Conventional models used for consequence assessment are based on integral models, and may not be adequate to cope with the dynamic evolution of accidental scenarios and their three‐dimensional features. On the other hand, consequence assessment models based on computational fluid dynamics (CFD) approaches are promising to cope with complex scenarios and environments, but setting the simulation introduces relevant uncertainties associated with both the input data, assumptions, and with the modelling of physical effects involved. In the present study, uncertainty quantification (UQ) techniques are applied to support advanced safety studies based on CFD simulations of hazardous gas dispersion. Firstly, the accidental scenarios are characterized by defining release scenarios and conditions and quantifying source terms using integral models. At the same time, input meteorological data are gathered. This enables the development of high‐fidelity CFD simulations of gas dispersion based on different input sets and eventually the implementation of UQ techniques. The generalized polynomial chaos (gPC) expansion is employed to obtain hazardous gas concentration based on the variation of wind direction and speed. The present method is applied for the analysis of a real plant featuring a complex layout. The results show the advantages of the present approach by quantifying the influence of meteorological conditions and providing indications for supporting the development of protection systems and emergency measures.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3